Chemie
- Details
- Zugriffe: 93958
Name: Horst, 2017
Lara Hohenberger 2019-01
In der Chemie werden Elemente durch Bindungen zusammengehalten. Im Grunde gibt es zwei Arten von Bindungen, die aber nicht als einzige Form angesehen werden dürfen. Vielmehr gibt es zwischen beiden Mischformen.
Die Atombindung
Was ist eine Atombindung?
Die Atombindung gehört zu den Hauptbindungsarten der Chemie.
Teilen sich zwei Elemente einen teil ihrer Außenelektronen, so dass beide Elemente dadurch Edelgaskonfiguration erhalten, so liegt eine Atombindung vor. Atombindungen findet man vor allem bei Nichtmetallelementen wie C, N, S, O, N, P, F, Cl, Br.
Haben die beiden Elemente eine unterschiedliche Elektronegativität, so befinden sich diese Bindungselektronen aber nicht genau zwischen den beiden Elementen. Vielmehr werden sie vom elektrogenativeren Element stärker angezogen, so dass sie sich näher und auch statistisch häufiger bei diesem Element aufhalten. Man nennt dies auch eine polare Atombindung. Dipole sind in diesem Fall möglich.
Durch die Herausbildung eines oder mehreren Elektropaare entsteht eine Bindung zwischen den Atomen. Ein Beispiel ist die Edelgaskonfiguration bei der mindestens ein Atom eine stabile Elektronenkonfiguration erhält. Allerdings gibt es einen Unterschied zwischen polar und unpolaren Atombindungen. Je nachdem, wie stark das gemeinsame Elektronenpaar von einem der beiden Atome angezogen wird.
Ein Beispiel für eine polare Atombindung ist die Bindung bei Chlorwasserstoff:
H-Cl
EN H = 2,2
EN Cl = 3,2 => Differenz: 1,0 => polare Atombindung
Die Ionenbindung
Was ist eine Ionenbindung?
Definition: Eine Ionenbindung ist eine chemische Bindung, die besonders bei Salzen auftritt. Sie basiert auf der verbindung von mindestens zwei Atomen mit unterschiedlicher Ionenladung.
Wie entsteht eine Ionenbindung?
Ionenbindungen entstehen, wenn sich elektropositive und elektronegative Elemente miteinander verbinden. Diese Verbindung entsteht durch den Übergang von Elektronen des einen Atoms auf das des anderen. Dabei wird kein gemeinsames Elektronenpaar gebildet, sondern es entstehen positive und negative Ionen. Die entstandenen Ionen treten miteinander in Wechselwirkung, was zunächst zur Bildung von Ionenpaaren führt. Aus den Ionenpaaren bilden sich dann Ionengitter. Dabei wird Energie freigesetzt.
z.B. Cl + e- reagiert zu Cl-
Übersteigt nun die Differenz der Elektronegativitäten den Wert 1,7 so werden die Bindungselektronen so stark zum Elektronegativeren gezogen, dass dieser sie ganz aufnimmt. Der weniger Elektronegativere Partner (umgangsprachlich der Elektropositivere) verliert die Bindungselektronen. Beide Teilchen haben nun komplett Edelgaskonfiguration erhalten. Es sind Ionen entstanden.
Bei einer Ionenbindung bleiben nun diese Ionen im festen Zustand dennoch beieinander, da sie sich durch ihre ungleichen Ladungen anziehen. Ionenbindungen sind typisch für Salze (Salze bestehen aus Metallionen und Säurerestionen) und Säuren & Laugen.
Ein Beispiel für eine Ionenbindung ist die Bindung bei Fluorwasserstoff:
H - F
EN H = 2,2
EN F = 4,0 => Differenz: 1,8 => Ionenbindung.
Da Fluor das Bindungselektron vom Wasserstoff erhält, ist die richtige Schreibweise: H+ F-.
Ionenbindung und Atombindung im Vergleich
Ionenbindungen sind um einiges stärker als Atombindungen. Eine recht typische Eigenschaft von Salzen ist die hohen Schmelztemperatur, da die Teilchen dort wegen der starken Ionenbindung stärker zusammen gehalten werden.
Atombindung | Ionenbindung |
- meist aus: Nichtmetall + Nichtmetall -Differenz der Elektronegativität =0,0 - ca. 1,6 - Bindungen durch gemeinsame Elektronenpaare - meist niedriger Schmelzpunkt - es entstehen polare oder unpolare Moleküle |
- meist aus: Metall + Nichtmetall (Säurerest) - Differenz der Elektronegativität >1,7 - Bindung durch elektrostatische Anziehung ungleich geladener Teilchen - meist hoher Schmelzpunkt - Es entstehen z.B. Salze, welchen ein Ionengitter zugrunde liegt |
Zusammenfassung: Bei einer Atombindung erreichen Elemente Edelgaskonfiguration durch gemeinsame Benutzung von Außenelektronen, bei der Ionenbindung werden die Elektronen komplett ausgetauscht und somit von einem Partner abgegeben und vom anderen aufgenommen.
- Anorganische Chemie: Wasserstoff
- Anorganische Chemie: Wie berechnet man Neutralistionsaufgaben (Beispielaufgaben)
- Anorganische Chemie: Wie funktioniert der Lithium-Ionen-Akku?
- Anorganische Chemie: Zink
- Anorgansiche Chemie: Redoxreaktion - Beispielaufgaben
- Biochemie: Biokatalysatoren (Enzyme)
- Chemie: Oxidationszahlen und deren Bestimmung (!)
- Farbigkeit und Molekülstruktur
- Glossar: Fachbegriffe der anorganischen und organischen Chemie mit Erklärungen
- Komplexchemie: Anwendungen der Komplexchemie
- Komplexchemie: Aquakomplexe
- Komplexchemie: Aufbau von Komplexen
- Komplexchemie: Chelatkomplexe
- Komplexchemie: Historischer Abriss der Entdeckung der Komplexchemie
- Komplexchemie: In der Natur vorkommende (biologische) Komplexverbindungen
- Komplexchemie: Komplexe Gleichgewichtsreaktionen und die Stabilitätskonstanten
- Komplexchemie: Komplexstabilitätskonstante und Komplexzerfallskonstante
- Komplexchemie: Ligandenaustauschreaktionen
- Komplexchemie: Nomenklatur (Benennung) von Komplexen
- Komplexchemie: Wasserenthärtung
- Ökologische, ökonomische und soziale Nachhaltigkeit in Chemie
- Organische Chemie: Gelatine
- Selektivität und Spezifität von Katalysatoren
- Herstellung von Maßlösungen
- I-Effekte beeinflussen die Säurestarke von Carbonsäuren
- Organische Chemie: Oxidative Fettumwandlung (Ranzigwerden von Fetten)
- Organische Chemie: Alkane - feste Alkane // Wachse und Paraffine
- Organische Chemie: Alkane - flüssige Alkane
- Organische Chemie: Alkane - gasförmige Alkane
- Organische Chemie: Alkanole (Alkohole)
- Organische Chemie: Alkene und Alkine
- Organische Chemie: Alkohol und seine Wirkung auf Menschen
- Organische Chemie: Alkoholate
- Organische Chemie: Alkohole: Ethanolherstellung durch alkoholische Gärung und großtechnische Produktion
- Organische Chemie: Aminosäuren - Peptidbindung, Typen, Aufbau, Reaktionen
- Organische Chemie: Anorganische Ester
- Organische Chemie: Aufgaben und Übungen zur Nomenklatur bei organischen Verbindungen
- Organische Chemie: Benzin und Diesel
- Organische Chemie: Bestimmung von Schmelz- und Siedepunkten
- Organische Chemie: Biogasanlagen
- Organische Chemie: Brennbarkeit von Kohlenwasserstoffen
- Organische Chemie: Carbonsäuren: homologe Reihe, Verwendung
- Organische Chemie: Carbonylverbindungen - Aldehyde
- Organische Chemie: Carbonylverbindungen - Ketone
- Organische Chemie: chemische Nachweise bei organischen Verbindungen
- Organische Chemie: Cis-/ trans-Isomerie und E/Z-Isomerie
- Organische Chemie: Cycloalkane und Cykloalkene
- Organische Chemie: Darstellungsweisen organischer Verbindungen
- Organische Chemie: Der Einfluss der I-Effekte auf die Säurestärke
- Organische Chemie: Die Aminosäure Glycin
- Organische Chemie: Die Chemie der "Shisha"
- Organische Chemie: Die Harnstoffsynthese von Friedrich Wöhler
- Organische Chemie: Eigenschaften von Aminosäuren
- Organische Chemie: Einfluss von Molekülmasse und Van der Waals-Kräften auf die Schmelz- und Siedepunkte
- Organische Chemie: Elektrophile und nukleophile Addition
- Organische Chemie: Eliminierung
- Organische Chemie: Energetische Betrachtung organischer Reaktionen
- Organische Chemie: Erdöl und Erdgas
- Organische Chemie: Erdöldestillation zur Gewinnung von Kohlenwasserstoffen
- Organische Chemie: Ester und die Veresterung
- Organische Chemie: Esterspaltung durch Hydrolyse
- Organische Chemie: Ethan
- Organische Chemie: Ethanol
- Organische Chemie: Ethen, Propen und Buten
- Organische Chemie: Ethin
- Organische Chemie: Ethin, Propin, Butin
- Organische Chemie: Färbeverfahren
- Organische Chemie: Fehlingprobe & Tollens-Probe
- Organische Chemie: Fehlingprobe und reduzierende Eigenschaften bei Kohlenhydraten
- Organische Chemie: Fette
- Organische Chemie: Fetthärtung und Margarineherstellung
- Organische Chemie: Fettsäuren
- Organische Chemie: Fischer-Projektion und die Umwandlung in die Haworth-Projektion
- Organische Chemie: Fluor-Chlor-Kohlenwasserstoffe (FCKW)
- Organische Chemie: Fruchtsäuren
- Organische Chemie: Fructose
- Organische Chemie: Galactose (!)
- Organische Chemie: Glucose (Traubenzucker)
- Organische Chemie: Glycogen (tierische Stärke)
- Organische Chemie: Glycosidische Bindung
- Organische Chemie: Gummi und Kautschuk
- Organische Chemie: Halogenalkane (!)
- Organische Chemie: Homologe Reihe der Alkane (!)
- Organische Chemie: I-Effekte
- Organische Chemie: Insulin
- Organische Chemie: Isobuten
- Organische Chemie: Isomaltose & Maltose als typische Disaccharide
- Organische Chemie: Isomerieformen
- Organische Chemie: Kerosin und Schweröl als Erdölbestandteile
- Organische Chemie: Keto-En(di)ol-Tautomerie bei Monosacchariden
- Organische Chemie: Kohle und Graphit
- Organische Chemie: Kohlenhydrate - Disaccharide
- Organische Chemie: Kunststoffe I - Allgemeines und radikalische Polymerisation
- Organische Chemie: Kunststoffe im Vergleich: Thermoplaste
- Organische Chemie: Lactose
- organische Chemie: Löslichkeit von organischen Verbindungen (polare und apolare Lösungsmittel)
- Organische Chemie: Mechanismus Veresterung
- Organische Chemie: mehrwertige Alkohole (Alkanole)
- Organische Chemie: Methan
- Organische Chemie: Nachweis von Proteinen (Ninhydrin-Reaktion)
- Organische Chemie: Nachweise für ungesättige Fettsäuren
- Organische Chemie: Nitril als wichtiger Kunststoff
- Organische Chemie: Nomenklatur und Benennung von organischen Kohlenwasserstoffen
- Organische Chemie: Nukleophile Addition
- Organische Chemie: Nukleophile Substitution
- Organische Chemie: Optische Aktivität
- Organische Chemie: Oxidation und Reduktion von Aldehyden
- Organische Chemie: Oxidation von Alkoholen
- Organische Chemie: Oxidation von Glucose mit Methylenblau (blaues Wunder)
- Organische Chemie: Pektine
- Organische Chemie: Petrochemie
- Organische Chemie: Plexiglas als Kunststoff
- Organische Chemie: Polare und apolare Lösungsmittel und Lösungmitteleigenschaften (!)
- Organische Chemie: Polykondensation von Nylon
- Organische Chemie: Polysaccharide
- Organische Chemie: Propan
- Organische Chemie: Radikalische Substitution
- Organische Chemie: Reaktionsmechanismen der organischen Chemie (Übersicht)
- Organische Chemie: Redoxreaktionen und Oxidationszahlen bei organischen Verbindungen
- Organische Chemie: Saccharose
- Organische Chemie: Schmelz- und Siedebereiche von Fetten und Ölen
- Organische Chemie: Schmelz- und Siedepunkte von Alkanen und Alkenen
- Organische Chemie: Schmerzmittel
- Organische Chemie: Spiegelbildisomerie (Stereoisomerie)
- Organische Chemie: Stärke (Amylose und Amylopektin)
- Organische Chemie: Struktur- und Eigenschaftsbeziehungen bei organischen Kohlenwasserstoffen
- Organische Chemie: Tenside
- Organische Chemie: Titration von Glycin
- Organische Chemie: Typen von Carbonsäuren
- Organische Chemie: Verbrennung von Alkanen und CO2-Emission
- Organische Chemie: Vergleich von Siedepunkten bei Alkanen, Alkanolen, Aldehyden und Carbonsäuren
- Organische Chemie: Verseifung
- Organische Chemie: Viskosität
- Organische Chemie: Was ist Organische Chemie?
- Organische Chemie: Zusammensetzung von Waschmitteln
- Organische Chemie: Zusammensetzung von Waschmitteln und deren Funktion
- Organische Chemie: Zwischenmolekulare Kräfte und Anziehungskräfte zwischen Molekülen
- Physikalische Chemie: Die Grundlagen der Thermodynamik