Chemie
- Details
- Zugriffe: 10205
Name:
Samuel Hohenberger, 2018-01
Massenwirkungsgesetz (MWG)
Wenn wir in unserem Alltag den Begriff Gleichgewicht hören, so denken wir an ausgewogene Massen, Gleichheiten die sich gegenseitig aufheben oder im allgemeinen an Dinge, die im gleichen Verhältnis zu einander stehen. In der Chemie hingegen versteht man den Begriff Gleichgewicht etwas anders. Denn Chemiker verstehen darunter einen Zustand, der sich in umkehrbaren Reaktionen zwischen Hin- und Rückreaktion einstellt. Es handelt sich hierbei jedoch nicht um ein ruhiges Gleichgewicht, sondern vielmehr um ein dynamisches Gleichgewicht. Das bedeutet, dass in Reaktionen Stoffe im selben Maße gleichzeitig auf- und abgebaut werden. Denn im Gegensatz zu unserer alltäglichen Vorstellung von Gleichgewichten kann sich ein chemisches Gleichgewicht auch einstellen wenn die Konzentration eines Reaktionspartners deutlich höher ist als die des Anderen.
Der Name dieses Gesetzes leitet sich aus der alten Bezeichnung „aktive Masse“ für die Massenkonzentration ab. Es wurde im Jahr 1867 von den norwegischen Wissenschaftlern Cato Maximilian und Peter Waage formuliert.
Substanzen (Stoffe), die befähigt sind umkehrbar (reversibel) chemisch zu reagieren, stellen nach einer bestimmten Zeit einen dynamischen Zustand her, in dem die Konzentration der Reaktionspartner untereinander in einem Verhältnis stehen. Dieses Verhältnis wird durch das MWG beschrieben.
Bedeutend für die Bildung des Massenwirkungsgesetzes ist die für eine bestimmte Temperatur geltende Gleichgewichtskonstante Kc. Sie wird aus den einzelnen Gleichgewichtskonzentrationen c berechnet.
Allgemein gilt: aA + bB ⇌ cC + dD
Cglgw(C)c · Cglgw(D)d
Kc = ------------------------------
Cglgw(A)a · Cglgw(B)b
c(A), c(B), c(C), c(D) sind hierbei die Gleichgewichtskonzentrationen der Edukte bzw. Produkte. Es wird also die Summe der Konzentration der Produkte durch die der Edukte geteilt. Der Koeffizient der beteiligten Stoffe wird im Massenwirkungsgesetz potenziert.
Wichtig: Alle verwendeten Konzentrationen sind Gleichgewichtskonzentrationen!
Durch Temperaturerhöhung verschiebt sich das Gleichgewicht in Richtung des endothermen Verlaufs der Reaktion. Bei Temperatursenkung folglich in die entgegengesetzte Richtung.
Beispiel: 2NO2 ⇌ N2 O4
Bei der Reaktion von Stickstoffdioxid zu Distickstofftetroxid bewirkt eine Temperaturerhöhung eine erhöhte Rückreaktion, d.h. eine erhöhte Reaktion zu dem Edukt Stickstoffdioxid. Somit verschiebt sich das Gleichgewicht nach links. Eine Temperatursenkung hingegen bewirkt eine Verschiebung des Gleichgewichts nach rechts. Somit bildet sich verstärkt das farblose Gas Distickstofftetroxid.
Verändert man die Konzentrationen der am Gleichgewicht beteiligten Stoffe, so läuft die Reaktion in der Richtung ab, die zur Wiederherstellung des Werts der Gleichgewichtskonstante führt. Gibt man zum Beispiel zu einer Essigsäurelösung eine starke Säure zu, so erhöht sich die Konzentration an H3O+- Ionen. Entsprechend muss deshalb eine gewisse Menge an Acetat-Ionen unter Erhöhung der Essigsäurekonzentration verbraucht werden.
Somit gilt die Gleichgewichtskonstante als Konzentrationsunabhängig.
Da für Gleichgewichtsreaktionen, bei denen Gase Reaktionspartner darstellen, für den Druck analoges gilt, ist die Gleichgewichtskonstante zudem unabhängig von dem Druck.
Auch die Anwendung von Katalysatoren verändert die Gleichgewichtskonstante nicht. Katalysatoren beeinflussen zwar die Geschwindigkeit des Einstellen des chemischen Gleichgewichts, nehmen aber nicht weiter Einfluss auf die Gleichgewichtslage.
Anhand der Größe der Gleichgewichtskonstanten K kann man die Vorzugsrichtung der Reaktion erkennen. Ist K=1 , so laufen Hin- und Rückreaktion mit gleicher Gewichtung ab. Ist K größer als 1 so liegt das Gleichgewicht auf Seiten der Produkte. Die Hinreaktion ist folglich bevorzugt. Ist K hingegen kleiner als 1 liegt das Gleichgewicht auf Seiten der Edukte. Es läuft die Rückreaktion bevorzugt ab.
Beispiel:
Reagiert 1mol Ethanol mit 0,5mol Essigsäure erhält man im Greichgewichtszustand 0,42mol Essigsäuremethylester.
Aufgabe: Berechne die Gleichgewichtskonstante Kc!
Grafik
Ausgangsstoffmenge: 0,5mol 1mol ⇌ 0mol 0mol
GG-Stoffmenge: (0,5-0,42)mol (1-0,42)mol ⇌ 0,42mol 0,42mol
Massenwirkungsgesetz aufstellen und Werte einsetzen:
c(E) · c(W) 0,42mol · 0,42mol
Kc = --------------- = ----------------------- = 3,8
c(A) · c(S) 0,58mol · 0,08mol
A: Die Gleichgewichtskonstante nimmt den Wert 3,8 an.
- Anorganische Chemie: Das Orbitalmodell - ein modernes Atommodell
- Anorganische Chemie: Der Einfluss der Konzentration auf die Reaktionsgeschwindigkeit & deren Bestimmung
- Anorganische Chemie: Der Protolysegrad von Säuren und Basen
- Anorganische Chemie: Der Springbrunnenversuch (mit HCl und NH3)
- Anorganische Chemie: Die Normalwasserstoffhalbzelle und die Spannungsreihe
- Anorganische Chemie: Edelgase - Argon
- Anorganische Chemie: Edelgase - Helium
- Anorganische Chemie: Edelgase - Neon
- Anorganische Chemie: Edelgase - Radon
- Anorganische Chemie: Edelgase - Xenon
- Anorganische Chemie: Einflussfaktoren auf die Reaktionsgeschwindigkeit
- Anorganische Chemie: Elektrolyse
- Anorganische Chemie: Elektrolyte in der Elektrochemie
- Anorganische Chemie: Energie, Enthalpie & Entropie chemischer Reaktionen
- Anorganische Chemie: Entropie
- Anorganische Chemie: Erdalkalimetalle - Barium
- Anorganische Chemie: Erdalkalimetalle - Beryllium
- Anorganische Chemie: Erdalkalimetalle - Calcium
- Anorganische Chemie: Erdalkalimetalle - Magnesium
- Anorganische Chemie: Erdalkalimetalle - Strontium
- Anorganische Chemie: Erstellen von Valenzstrichformeln / Lewis-Formeln
- Anorganische Chemie: Freie Enthalpie, Gibbs-Helmholtz und Reaktions- und Bildungsenthalpie
- Anorganische Chemie: Galvanisches Element & Daniell-Element
- Anorganische Chemie: Gasgleichgewichte, Kp und das MWG
- Anorganische Chemie: Halogene - Astat
- Anorganische Chemie: Halogene - Brom
- Anorganische Chemie: Halogene - Chlor
- Anorganische Chemie: Halogene - Iod
- Anorganische Chemie: Heterogene Katalyse
- Anorganische Chemie: Historische Entwicklung des Säure-Base-Begriffs (Arrhenius & Brönstedt)
- Anorganische Chemie: Innere Energie, Enthalpie und Verbrenungsenthalpien
- Anorganische Chemie: Ionen und Ionenbildung
- Anorganische Chemie: Ionisierungsenergie, Elektroaffinität und Elektronegativität
- Anorganische Chemie: Ist Natronlauge eine Base? (Protolyse)
- Anorganische Chemie: Katalysator und Katalyse
- Anorganische Chemie: Kollisionsmodell & Stoßtheorie
- Anorganische Chemie: Konzentrationselemente und die Nernstgleichung (noch frei)
- Anorganische Chemie: Krypton
- Anorganische Chemie: Kupfer und Kupfergewinnung
- Anorganische Chemie: Legierungen
- Anorganische Chemie: Löslichkeit und Löslichkeitsgleichgewichte
- Anorganische Chemie: Metalle - Alkalimetalle
- Anorganische Chemie: Metalle - Allgemeine Übersicht, Eigenschaften, Verwendung
- Anorganische Chemie: Metalle - Aluminium und Aluminiumverbindungen
- Anorganische Chemie: Metalle - Eisen und Eisenverbindungen
- Anorganische Chemie: Metalle - Erdalkalimetalle
- Anorganische Chemie: Metalle - Gold
- Anorganische Chemie: Metalle - Korrosion und Korrosionsschutz
- Anorganische Chemie: Metalle - Kupfer und Kupferverbindungen
- Anorganische Chemie: Metalle - Uran
- Anorganische Chemie: Metalle und die Metallbindung
- Anorganische Chemie: Oxidationsstufen des Mangans
- Anorganische Chemie: Periodensystem (!)
- Anorganische Chemie: pH-Abhängigkeit von Redoxpotentialen (über die Nernst-Gleichung)
- Anorganische Chemie: pH-Elektrode & elektrochemische pH-Wert-Bestimmung
- Anorganische Chemie: pH-Wert (und pOH-Wert)
- Anorganische Chemie: Phosphor
- Anorganische Chemie: Photovoltaik und Brennstoffzelle
- Anorganische Chemie: Protolyse von Phosphorsäure
- Anorganische Chemie: Protolysereaktionen bei Salzen (Säure-Base Reaktionen)
- Anorganische Chemie: Reaktion von Säuren und Basen mit Wasser
- Anorganische Chemie: Reaktionsgeschwindigkeit und Messung der Reaktionsgeschwindigkeit
- Anorganische Chemie: Reaktionsgeschwindigkeit, Momentangeschwindigkeit und Messung (sowie HWZ)
- Anorganische Chemie: Reaktionsgeschwindigkeitsmessung von Thiosulfationen mit Säure
- Anorganische Chemie: Redoxreaktionen aufstellen
- Anorganische Chemie: Redoxreaktionen im Alltag
- Anorganische Chemie: Salpetersäure HNO₃ - Herstellung, Verwendung, Eigenschaften
- Anorganische Chemie: Salpetrige Säure
- Anorganische Chemie: Salze
- Anorganische Chemie: Salzherstellung durch Neutralisation
- Anorganische Chemie: Sauerstoff
- Anorganische Chemie: Sauerstoffsäuren des Chlors
- Anorganische Chemie: Sauerstoffsäuren des Phosphors
- Anorganische Chemie: Säure-Base Chemie (Brönsted-Definitionen)
- Anorganische Chemie: Säure-Base-Puffer und Puffersysteme
- Anorganische Chemie: Säurestärke (pKs) und Basenstärke (pKb)
- Anorganische Chemie: Schwefel
- Anorganische Chemie: Schwefelsäure
- Anorganische Chemie: Stickstoff
- Anorganische Chemie: Struktur von Salzen, Ionengitter und Ionenbildung
- Anorganische Chemie: Übungsaugaben zum Massenwirkungsgesetz (MWG)
- Anorganische Chemie: Vergleich von Ionenbindung und Atombindung
- Anorganische Chemie: Wasserstoff
- Anorganische Chemie: Wie berechnet man Neutralistionsaufgaben (Beispielaufgaben)
- Anorganische Chemie: Wie funktioniert der Lithium-Ionen-Akku?
- Anorganische Chemie: Zink
- Anorgansiche Chemie: Redoxreaktion - Beispielaufgaben
- Biochemie: Biokatalysatoren (Enzyme)
- Chemie: Oxidationszahlen und deren Bestimmung (!)
- Farbigkeit und Molekülstruktur
- Glossar: Fachbegriffe der anorganischen und organischen Chemie mit Erklärungen
- Komplexchemie: Anwendungen der Komplexchemie
- Komplexchemie: Aquakomplexe
- Komplexchemie: Aufbau von Komplexen
- Komplexchemie: Chelatkomplexe
- Komplexchemie: Historischer Abriss der Entdeckung der Komplexchemie
- Komplexchemie: In der Natur vorkommende (biologische) Komplexverbindungen
- Komplexchemie: Komplexe Gleichgewichtsreaktionen und die Stabilitätskonstanten
- Komplexchemie: Komplexstabilitätskonstante und Komplexzerfallskonstante
- Komplexchemie: Ligandenaustauschreaktionen
- Komplexchemie: Nomenklatur (Benennung) von Komplexen
- Komplexchemie: Wasserenthärtung
- Ökologische, ökonomische und soziale Nachhaltigkeit in Chemie
- Organische Chemie: Gelatine
- Selektivität und Spezifität von Katalysatoren
- Herstellung von Maßlösungen
- I-Effekte beeinflussen die Säurestarke von Carbonsäuren
- Organische Chemie: Oxidative Fettumwandlung (Ranzigwerden von Fetten)
- Organische Chemie: Alkane - feste Alkane // Wachse und Paraffine
- Organische Chemie: Alkane - flüssige Alkane
- Organische Chemie: Alkane - gasförmige Alkane
- Organische Chemie: Alkanole (Alkohole)
- Organische Chemie: Alkene und Alkine
- Organische Chemie: Alkohol und seine Wirkung auf Menschen
- Organische Chemie: Alkoholate
- Organische Chemie: Alkohole: Ethanolherstellung durch alkoholische Gärung und großtechnische Produktion
- Organische Chemie: Aminosäuren - Peptidbindung, Typen, Aufbau, Reaktionen
- Organische Chemie: Anorganische Ester
- Organische Chemie: Aufgaben und Übungen zur Nomenklatur bei organischen Verbindungen
- Organische Chemie: Benzin und Diesel
- Organische Chemie: Bestimmung von Schmelz- und Siedepunkten
- Organische Chemie: Biogasanlagen
- Organische Chemie: Brennbarkeit von Kohlenwasserstoffen
- Organische Chemie: Carbonsäuren: homologe Reihe, Verwendung
- Organische Chemie: Carbonylverbindungen - Aldehyde
- Organische Chemie: Carbonylverbindungen - Ketone
- Organische Chemie: chemische Nachweise bei organischen Verbindungen
- Organische Chemie: Cis-/ trans-Isomerie und E/Z-Isomerie
- Organische Chemie: Cycloalkane und Cykloalkene
- Organische Chemie: Darstellungsweisen organischer Verbindungen
- Organische Chemie: Der Einfluss der I-Effekte auf die Säurestärke
- Organische Chemie: Die Aminosäure Glycin
- Organische Chemie: Die Chemie der "Shisha"
- Organische Chemie: Die Harnstoffsynthese von Friedrich Wöhler
- Organische Chemie: Eigenschaften von Aminosäuren
- Organische Chemie: Einfluss von Molekülmasse und Van der Waals-Kräften auf die Schmelz- und Siedepunkte
- Organische Chemie: Elektrophile und nukleophile Addition
- Organische Chemie: Eliminierung
- Organische Chemie: Energetische Betrachtung organischer Reaktionen
- Organische Chemie: Erdöl und Erdgas
- Organische Chemie: Erdöldestillation zur Gewinnung von Kohlenwasserstoffen
- Organische Chemie: Ester und die Veresterung
- Organische Chemie: Esterspaltung durch Hydrolyse
- Organische Chemie: Ethan
- Organische Chemie: Ethanol
- Organische Chemie: Ethen, Propen und Buten
- Organische Chemie: Ethin
- Organische Chemie: Ethin, Propin, Butin
- Organische Chemie: Färbeverfahren
- Organische Chemie: Fehlingprobe & Tollens-Probe
- Organische Chemie: Fehlingprobe und reduzierende Eigenschaften bei Kohlenhydraten
- Organische Chemie: Fette
- Organische Chemie: Fetthärtung und Margarineherstellung
- Organische Chemie: Fettsäuren
- Organische Chemie: Fischer-Projektion und die Umwandlung in die Haworth-Projektion
- Organische Chemie: Fluor-Chlor-Kohlenwasserstoffe (FCKW)
- Organische Chemie: Fruchtsäuren
- Organische Chemie: Fructose
- Organische Chemie: Galactose (!)
- Organische Chemie: Glucose (Traubenzucker)
- Organische Chemie: Glycogen (tierische Stärke)
- Organische Chemie: Glycosidische Bindung
- Organische Chemie: Gummi und Kautschuk
- Organische Chemie: Halogenalkane (!)
- Organische Chemie: Homologe Reihe der Alkane (!)
- Organische Chemie: I-Effekte
- Organische Chemie: Insulin
- Organische Chemie: Isobuten
- Organische Chemie: Isomaltose & Maltose als typische Disaccharide
- Organische Chemie: Isomerieformen
- Organische Chemie: Kerosin und Schweröl als Erdölbestandteile
- Organische Chemie: Keto-En(di)ol-Tautomerie bei Monosacchariden
- Organische Chemie: Kohle und Graphit
- Organische Chemie: Kohlenhydrate - Disaccharide
- Organische Chemie: Kunststoffe I - Allgemeines und radikalische Polymerisation
- Organische Chemie: Kunststoffe im Vergleich: Thermoplaste
- Organische Chemie: Lactose
- organische Chemie: Löslichkeit von organischen Verbindungen (polare und apolare Lösungsmittel)
- Organische Chemie: Mechanismus Veresterung
- Organische Chemie: mehrwertige Alkohole (Alkanole)
- Organische Chemie: Methan
- Organische Chemie: Nachweis von Proteinen (Ninhydrin-Reaktion)
- Organische Chemie: Nachweise für ungesättige Fettsäuren
- Organische Chemie: Nitril als wichtiger Kunststoff
- Organische Chemie: Nomenklatur und Benennung von organischen Kohlenwasserstoffen
- Organische Chemie: Nukleophile Addition
- Organische Chemie: Nukleophile Substitution
- Organische Chemie: Optische Aktivität
- Organische Chemie: Oxidation und Reduktion von Aldehyden
- Organische Chemie: Oxidation von Alkoholen
- Organische Chemie: Oxidation von Glucose mit Methylenblau (blaues Wunder)
- Organische Chemie: Pektine
- Organische Chemie: Petrochemie
- Organische Chemie: Plexiglas als Kunststoff
- Organische Chemie: Polare und apolare Lösungsmittel und Lösungmitteleigenschaften (!)
- Organische Chemie: Polykondensation von Nylon
- Organische Chemie: Polysaccharide
- Organische Chemie: Propan
- Organische Chemie: Radikalische Substitution
- Organische Chemie: Reaktionsmechanismen der organischen Chemie (Übersicht)