Chemie
- Details
- Zugriffe: 27096
Name:
Emily Fiedler, 2018-01
Gleichgewichte können in ihrer Lage verschoben werden
Wie wir bereits erfahren haben, stellt sich bei chemischen Reaktionen in geschlossenen Systemen nach einer gewissen Zeit in einem bestimmten Temperaturbereich ein chemisches Gleichgewicht ein. Das bedeutet, dass die Mengen aller an der Reaktion beteiligter Stoffe (Edukte und Produkte) in einem bestimmten Verhältnis vorliegen.
Es ist jedoch möglich, in diesem Gleichgewicht die Zusammensetzung des Reaktionsgemisches zu beeinflussen. Durch die Ausübung eines äußeren Zwangs (Änderung der äußeren Bedingungen) auf das System kann das Gleichgewicht gezielt in eine gewünschte Richtung verschoben werden, wodurch die Menge eines bestimmten Stoffes erhöht oder erniedrigt wird.
Beeinflussung des chemischen Gleichgewichts
Das chemische Gleichgewicht kann hauptsächlich durch Änderungen folgender drei äußerer Faktoren beeinflusst werden:
- Konzentrationsveränderung
- Temperaturveränderung
- Druckveränderung
Bei einer dynamischen Gleichgewichtsreaktion laufen gleichzeitig eine Hin- und eine Rückreaktion ab; die eine ist exotherm und die andere endotherm. In welche Richtung Energie verbraucht oder freigesetzt wird, ist von der Reaktion abhängig.
Edukte und Produkte
Nach Einwirken der Störung läuft entweder die Hin- oder die Rückreaktion verstärkt ab, um wiederum ein neues Gleichgewicht herzustellen.
Hierbei gilt das Prinzip von Le Chatelier (auch "Prinzip vom kleinsten Zwang").
Prinzip von Le Chatelier (auch "Prinzip vom kleinsten Zwang")
Wird ein äußerer Zwang in Form von Konzentrations-, Temperatur- oder Druckänderung auf ein sich im chemischen Gleichgewicht befindendes Gemisch ausgeübt, so verschiebt sich das Gleichgewicht und zwar auf die Reaktionsseite, auf der die Auswirkung des Zwangs minimiert wird. Das System weicht somit dem Zwang aus.
Konzentrationsveränderung
Wird die Menge eines an der Reaktion beteiligten Stoffes verändert, versucht das System dem Zwang auszuweichen, indem es das Gleichgewicht auf die Seite der Reaktion verschiebt, die zum Ausgleich der Störung führt.
Bei der Konzentrationserhöhung eines Reaktionspartners wird das Gleichgewicht in Richtung der Reaktionsseite verschoben, auf der dieser Stoff verbraucht wird. Die Erhöhung der Konzentration eines Stoffes führt zu seinem erhöhten Verbrauch.
Bei der Konzentrationsverringerung eines Reaktionspartners wird das Gleichgewicht in Richtung der Reaktionsseite verschoben, auf der dieser Stoff hergestellt wird. Die Verringerung der Konzentration eines Stoffes führt zu seiner vermehrten Produktion.
Dadurch ist es möglich gezielt Einzelkomponenten der Reaktion zu gewinnen.
Einstellung des chemischen Gleichgewichts (klicken zum Vergrößern)
Ein Beispiel für die Anwendung dieser Technik aus der Industrie ist die Ammoniak-Herstellung:
Aus Stickstoff und Wasserstoff wird Ammoniak hergestellt. Bei der Produktion wird ständig der kostengünstige Stickstoff zugeführt und so seine Konzentration erhöht. Um dies auszugleichen, verschiebt sich das Gleichgewicht der Reaktion in Richtung der Produktion des Ammoniaks.
Temperaturveränderung
Verändert man bei einer dynamischen Gleichgewichtsreaktion die Temperatur, so versucht das System diesem Zwang auszuweichen und ihn zu minimieren.
Bei Temperaturerhöhung verschiebt sich das Gleichgewicht in Richtung der endothermen Reaktion, da diese Energie verbraucht und somit die Temperatur wieder verringert wird. Es stellt sich ein neues Gleichgewicht ein.
Bei Temperaturerniedrigung verschiebt sich das Gleichgewicht in Richtung der exothermen Reaktion, da diese Energie freisetzt und somit die Temperatur wieder erhöht wird.
Wenn nun feststeht, ob die Hin- oder die Rückreaktion endotherm oder exotherm verläuft, kann man gezielt durch die Temperaturänderung das Gleichgewicht in Richtung der Edukte oder der Produkte verschieben.
Gasgleichgewicht aus Stickstoffdioxid und Distickstofftetraoxid
In diesem Beispiel weicht das Gleichgewicht bei einer Temperaturerhöhung dem Zwang aus, indem es sich mehr auf die Seite der Edukte verschiebt, da bei der Spaltung von Distickstofftetraoxid Energie verbraucht wird (endotherme Reaktion). Dadurch wird die Konzentration von Stickstoffdioxid erhöht.
Bei einer Temperaturerniedrigung verschiebt sich das Gleichgewicht mehr auf die Seite der Produkte, da bei der Reaktion zu Distickstofftetraoxid Energie freigesetzt wird (exotherme Reaktion). Dadurch wird die Konzentration von Distickstofftetraoxid erhöht.
Volumenveränderung / Druckveränderung
Wird auf ein chemisches Gleichgewicht ein Zwang in Form einer Druckerhöhung oder Volumenverringerung ausgeübt, verschiebt sich das Gleichgewicht in die Richtung der geringeren Teilchenmenge, wie im folgenden Beispiel dargestellt.
Einfluss einer Druckänderung auf ein Gasgleichgewicht
Bei Verringerung des Druckes oder Erhöhung des Volumens kommt es allerdings zur Verschiebung des chemischen Gleichgewichts in Richtung der größeren Teilchenmenge.
Die Voraussetzung dafür ist, dass mindestens ein Gas oder Gase unterschiedlicher Volumina in der Reaktion vorhanden sind.
- Anorganische Chemie: Berechnung des pH-Werts bei starken und schwachen Säuren & Basen
- Anorganische Chemie: Chemische Gleichgewichte am Korallenriff
- Anorganische Chemie: Chemische Reaktion und Reaktionswärme
- Anorganische Chemie: Das Deacon-Verfahren
- Anorganische Chemie: Das Löslichkeitsprodukt
- Anorganische Chemie: Das Massenwirkungsgesetz
- Anorganische Chemie: Das Orbitalmodell - ein modernes Atommodell
- Anorganische Chemie: Der Einfluss der Konzentration auf die Reaktionsgeschwindigkeit & deren Bestimmung
- Anorganische Chemie: Der Protolysegrad von Säuren und Basen
- Anorganische Chemie: Der Springbrunnenversuch (mit HCl und NH3)
- Anorganische Chemie: Die Normalwasserstoffhalbzelle und die Spannungsreihe
- Anorganische Chemie: Edelgase - Argon
- Anorganische Chemie: Edelgase - Helium
- Anorganische Chemie: Edelgase - Neon
- Anorganische Chemie: Edelgase - Radon
- Anorganische Chemie: Edelgase - Xenon
- Anorganische Chemie: Einflussfaktoren auf die Reaktionsgeschwindigkeit
- Anorganische Chemie: Elektrolyse
- Anorganische Chemie: Elektrolyte in der Elektrochemie
- Anorganische Chemie: Energie, Enthalpie & Entropie chemischer Reaktionen
- Anorganische Chemie: Entropie
- Anorganische Chemie: Erdalkalimetalle - Barium
- Anorganische Chemie: Erdalkalimetalle - Beryllium
- Anorganische Chemie: Erdalkalimetalle - Calcium
- Anorganische Chemie: Erdalkalimetalle - Magnesium
- Anorganische Chemie: Erdalkalimetalle - Strontium
- Anorganische Chemie: Erstellen von Valenzstrichformeln / Lewis-Formeln
- Anorganische Chemie: Freie Enthalpie, Gibbs-Helmholtz und Reaktions- und Bildungsenthalpie
- Anorganische Chemie: Galvanisches Element & Daniell-Element
- Anorganische Chemie: Gasgleichgewichte, Kp und das MWG
- Anorganische Chemie: Halogene - Astat
- Anorganische Chemie: Halogene - Brom
- Anorganische Chemie: Halogene - Chlor
- Anorganische Chemie: Halogene - Iod
- Anorganische Chemie: Heterogene Katalyse
- Anorganische Chemie: Historische Entwicklung des Säure-Base-Begriffs (Arrhenius & Brönstedt)
- Anorganische Chemie: Innere Energie, Enthalpie und Verbrenungsenthalpien
- Anorganische Chemie: Ionen und Ionenbildung
- Anorganische Chemie: Ionisierungsenergie, Elektroaffinität und Elektronegativität
- Anorganische Chemie: Ist Natronlauge eine Base? (Protolyse)
- Anorganische Chemie: Katalysator und Katalyse
- Anorganische Chemie: Kollisionsmodell & Stoßtheorie
- Anorganische Chemie: Konzentrationselemente und die Nernstgleichung (noch frei)
- Anorganische Chemie: Krypton
- Anorganische Chemie: Kupfer und Kupfergewinnung
- Anorganische Chemie: Legierungen
- Anorganische Chemie: Löslichkeit und Löslichkeitsgleichgewichte
- Anorganische Chemie: Metalle - Alkalimetalle
- Anorganische Chemie: Metalle - Allgemeine Übersicht, Eigenschaften, Verwendung
- Anorganische Chemie: Metalle - Aluminium und Aluminiumverbindungen
- Anorganische Chemie: Metalle - Eisen und Eisenverbindungen
- Anorganische Chemie: Metalle - Erdalkalimetalle
- Anorganische Chemie: Metalle - Gold
- Anorganische Chemie: Metalle - Korrosion und Korrosionsschutz
- Anorganische Chemie: Metalle - Kupfer und Kupferverbindungen
- Anorganische Chemie: Metalle - Uran
- Anorganische Chemie: Metalle und die Metallbindung
- Anorganische Chemie: Oxidationsstufen des Mangans
- Anorganische Chemie: Periodensystem (!)
- Anorganische Chemie: pH-Abhängigkeit von Redoxpotentialen (über die Nernst-Gleichung)
- Anorganische Chemie: pH-Elektrode & elektrochemische pH-Wert-Bestimmung
- Anorganische Chemie: pH-Wert (und pOH-Wert)
- Anorganische Chemie: Phosphor
- Anorganische Chemie: Photovoltaik und Brennstoffzelle
- Anorganische Chemie: Protolyse von Phosphorsäure
- Anorganische Chemie: Protolysereaktionen bei Salzen (Säure-Base Reaktionen)
- Anorganische Chemie: Reaktion von Säuren und Basen mit Wasser
- Anorganische Chemie: Reaktionsgeschwindigkeit und Messung der Reaktionsgeschwindigkeit
- Anorganische Chemie: Reaktionsgeschwindigkeit, Momentangeschwindigkeit und Messung (sowie HWZ)
- Anorganische Chemie: Reaktionsgeschwindigkeitsmessung von Thiosulfationen mit Säure
- Anorganische Chemie: Redoxreaktionen aufstellen
- Anorganische Chemie: Redoxreaktionen im Alltag
- Anorganische Chemie: Salpetersäure HNO₃ - Herstellung, Verwendung, Eigenschaften
- Anorganische Chemie: Salpetrige Säure
- Anorganische Chemie: Salze
- Anorganische Chemie: Salzherstellung durch Neutralisation
- Anorganische Chemie: Sauerstoff
- Anorganische Chemie: Sauerstoffsäuren des Chlors
- Anorganische Chemie: Sauerstoffsäuren des Phosphors
- Anorganische Chemie: Säure-Base Chemie (Brönsted-Definitionen)
- Anorganische Chemie: Säure-Base-Puffer und Puffersysteme
- Anorganische Chemie: Säurestärke (pKs) und Basenstärke (pKb)
- Anorganische Chemie: Schwefel
- Anorganische Chemie: Schwefelsäure
- Anorganische Chemie: Stickstoff
- Anorganische Chemie: Struktur von Salzen, Ionengitter und Ionenbildung
- Anorganische Chemie: Übungsaugaben zum Massenwirkungsgesetz (MWG)
- Anorganische Chemie: Vergleich von Ionenbindung und Atombindung
- Anorganische Chemie: Wasserstoff
- Anorganische Chemie: Wie berechnet man Neutralistionsaufgaben (Beispielaufgaben)
- Anorganische Chemie: Wie funktioniert der Lithium-Ionen-Akku?
- Anorganische Chemie: Zink
- Anorgansiche Chemie: Redoxreaktion - Beispielaufgaben
- Biochemie: Biokatalysatoren (Enzyme)
- Chemie: Oxidationszahlen und deren Bestimmung (!)
- Farbigkeit und Molekülstruktur
- Glossar: Fachbegriffe der anorganischen und organischen Chemie mit Erklärungen
- Komplexchemie: Anwendungen der Komplexchemie
- Komplexchemie: Aquakomplexe
- Komplexchemie: Aufbau von Komplexen
- Komplexchemie: Chelatkomplexe
- Komplexchemie: Historischer Abriss der Entdeckung der Komplexchemie
- Komplexchemie: In der Natur vorkommende (biologische) Komplexverbindungen
- Komplexchemie: Komplexe Gleichgewichtsreaktionen und die Stabilitätskonstanten
- Komplexchemie: Komplexstabilitätskonstante und Komplexzerfallskonstante
- Komplexchemie: Ligandenaustauschreaktionen
- Komplexchemie: Nomenklatur (Benennung) von Komplexen
- Komplexchemie: Wasserenthärtung
- Ökologische, ökonomische und soziale Nachhaltigkeit in Chemie
- Organische Chemie: Gelatine
- Selektivität und Spezifität von Katalysatoren
- Herstellung von Maßlösungen
- I-Effekte beeinflussen die Säurestarke von Carbonsäuren
- Organische Chemie: Oxidative Fettumwandlung (Ranzigwerden von Fetten)
- Organische Chemie: Alkane - feste Alkane // Wachse und Paraffine
- Organische Chemie: Alkane - flüssige Alkane
- Organische Chemie: Alkane - gasförmige Alkane
- Organische Chemie: Alkanole (Alkohole)
- Organische Chemie: Alkene und Alkine
- Organische Chemie: Alkohol und seine Wirkung auf Menschen
- Organische Chemie: Alkoholate
- Organische Chemie: Alkohole: Ethanolherstellung durch alkoholische Gärung und großtechnische Produktion
- Organische Chemie: Aminosäuren - Peptidbindung, Typen, Aufbau, Reaktionen
- Organische Chemie: Anorganische Ester
- Organische Chemie: Aufgaben und Übungen zur Nomenklatur bei organischen Verbindungen
- Organische Chemie: Benzin und Diesel
- Organische Chemie: Bestimmung von Schmelz- und Siedepunkten
- Organische Chemie: Biogasanlagen
- Organische Chemie: Brennbarkeit von Kohlenwasserstoffen
- Organische Chemie: Carbonsäuren: homologe Reihe, Verwendung
- Organische Chemie: Carbonylverbindungen - Aldehyde
- Organische Chemie: Carbonylverbindungen - Ketone
- Organische Chemie: chemische Nachweise bei organischen Verbindungen
- Organische Chemie: Cis-/ trans-Isomerie und E/Z-Isomerie
- Organische Chemie: Cycloalkane und Cykloalkene
- Organische Chemie: Darstellungsweisen organischer Verbindungen
- Organische Chemie: Der Einfluss der I-Effekte auf die Säurestärke
- Organische Chemie: Die Aminosäure Glycin
- Organische Chemie: Die Chemie der "Shisha"
- Organische Chemie: Die Harnstoffsynthese von Friedrich Wöhler
- Organische Chemie: Eigenschaften von Aminosäuren
- Organische Chemie: Einfluss von Molekülmasse und Van der Waals-Kräften auf die Schmelz- und Siedepunkte
- Organische Chemie: Elektrophile und nukleophile Addition
- Organische Chemie: Eliminierung
- Organische Chemie: Energetische Betrachtung organischer Reaktionen
- Organische Chemie: Erdöl und Erdgas
- Organische Chemie: Erdöldestillation zur Gewinnung von Kohlenwasserstoffen
- Organische Chemie: Ester und die Veresterung
- Organische Chemie: Esterspaltung durch Hydrolyse
- Organische Chemie: Ethan
- Organische Chemie: Ethanol
- Organische Chemie: Ethen, Propen und Buten
- Organische Chemie: Ethin
- Organische Chemie: Ethin, Propin, Butin
- Organische Chemie: Färbeverfahren
- Organische Chemie: Fehlingprobe & Tollens-Probe
- Organische Chemie: Fehlingprobe und reduzierende Eigenschaften bei Kohlenhydraten
- Organische Chemie: Fette
- Organische Chemie: Fetthärtung und Margarineherstellung
- Organische Chemie: Fettsäuren
- Organische Chemie: Fischer-Projektion und die Umwandlung in die Haworth-Projektion
- Organische Chemie: Fluor-Chlor-Kohlenwasserstoffe (FCKW)
- Organische Chemie: Fruchtsäuren
- Organische Chemie: Fructose
- Organische Chemie: Galactose (!)
- Organische Chemie: Glucose (Traubenzucker)
- Organische Chemie: Glycogen (tierische Stärke)
- Organische Chemie: Glycosidische Bindung
- Organische Chemie: Gummi und Kautschuk
- Organische Chemie: Halogenalkane (!)
- Organische Chemie: Homologe Reihe der Alkane (!)
- Organische Chemie: I-Effekte
- Organische Chemie: Insulin
- Organische Chemie: Isobuten
- Organische Chemie: Isomaltose & Maltose als typische Disaccharide
- Organische Chemie: Isomerieformen
- Organische Chemie: Kerosin und Schweröl als Erdölbestandteile
- Organische Chemie: Keto-En(di)ol-Tautomerie bei Monosacchariden
- Organische Chemie: Kohle und Graphit
- Organische Chemie: Kohlenhydrate - Disaccharide
- Organische Chemie: Kunststoffe I - Allgemeines und radikalische Polymerisation
- Organische Chemie: Kunststoffe im Vergleich: Thermoplaste
- Organische Chemie: Lactose
- organische Chemie: Löslichkeit von organischen Verbindungen (polare und apolare Lösungsmittel)
- Organische Chemie: Mechanismus Veresterung
- Organische Chemie: mehrwertige Alkohole (Alkanole)
- Organische Chemie: Methan
- Organische Chemie: Nachweis von Proteinen (Ninhydrin-Reaktion)
- Organische Chemie: Nachweise für ungesättige Fettsäuren
- Organische Chemie: Nitril als wichtiger Kunststoff
- Organische Chemie: Nomenklatur und Benennung von organischen Kohlenwasserstoffen
- Organische Chemie: Nukleophile Addition
- Organische Chemie: Nukleophile Substitution
- Organische Chemie: Optische Aktivität
- Organische Chemie: Oxidation und Reduktion von Aldehyden
- Organische Chemie: Oxidation von Alkoholen
- Organische Chemie: Oxidation von Glucose mit Methylenblau (blaues Wunder)
- Organische Chemie: Pektine
- Organische Chemie: Petrochemie
- Organische Chemie: Plexiglas als Kunststoff