Chemie
- Details
- Zugriffe: 21487
Name: Magdalena Schwander
Allgemeines zur Energiebeteiligung bei chemischen Reaktionen
Reaktionen werden in spontan und nicht spontan unterteilt. Um sich mit der Frage der Spontaneität von Reaktionen zu befassen zu können, müssen vorher noch einige Begriffe geklärt werden: Soll eine Untersuchung in einem bestimmten räumlichen Bereich erfolgen, so nennt man diesen begrenzten Ausschnitt des Raums System. Den umgebenden Rest bezeichnet man als Umgebung. Je nachdem, ob ein System einen Stoff- und/oder Energieaustausch zulässt, spricht man von einem offenen, geschlossenen oder isolierten System.
Die Triebkraft einer chemischen Reaktion
In der Fachsprache beschreiben wir das freiwillig weiterlaufende Verhalten von Reaktionen als „spontan“. Eine Reaktion ist also spontan, wenn sie von selbst weiterläuft. Ein Beispiel für diese Reaktionen ist das Entzünden eines Feuers. Hat man dies einmal zum Brennen gebracht, brennt es selbstständig weiter. Das Erkennen einer spontanen Reaktion ist oft nicht so einfach, da die Reaktionsgeschwindigkeit sehr unterschiedlich sein kann.
Es gibt Reaktionen die extrem schnell ablaufen (z.B. eine Explosion) und Reaktionen die sehr langsam ablaufen (z.B. das Vergilben von Papier). Entscheidend ist, dass ein Bestreben zur Reaktion besteht. Die notwendige einmalige Zufuhr eines Energiebetrags, die sogenannte Aktivierungsenergie Nicht spontane Reaktionen laufen nur dann ab, wenn ständig Energie in das System gesteckt wird. Stoppt diese Energiezufuhr so stoppt auch die Reaktion.
Ein Beispiel für diese Art von Reaktionen ist die Photosynthese. Sie kann nur ablaufen, wenn Sonnenstrahlen, also Lichtenergie, ständig auf die Blätter fällt. Wird die Bestrahlung der Blätter unterbrochen, so stoppt auch die Photosynthese. Spontane und nicht spontane Reaktionen hatten jedoch eines gemeinsam: Sie verloren durch ihre Reaktion Energie. Und genau das ist einer der Faktoren, die für die Triebkraft von Reaktionen verantwortlich sind.
Energetische Größen und ihre Tendenzen
Jedes System ist bestrebt, einen energieärmeren Zustand zu erreichen. Obwohl Systeme immer nach einem Energieminimum streben, ist es nicht sicher, dass sie es auch erreichen. Die häufigste Form eines Energieaustauschs ist jene von Wärme. So lässt sich bei chemischen Reaktionen neben einer Abgabe auch eine Aufnahme von Wärme beobachten. Man nennt sie allgemein Reaktionswärme. Misst man die Reaktionswärme unter konstantem Druck, also zum Beispiel in einem offenen Gefäß, spricht man von Enthalpie.
Enthalpie [H]
(thalpein… griech. = erwärmen)
Die Enthalpie ist ein Maß für die Energie eines Systems. Sie wird durch den Buchstaben H symbolisiert, wobei das H vom englischen heat content (Wärmeinhalt) abgeleitet ist. Ihre Einheit ist Joule, J.
Exotherme Reaktionen
(exo… griech. = heraus; therme… griech. = Wärme)
Bei exothermen Reaktionen entstehen Atomkombinationen, die einen geringeren Energiegehalt besitzen als ihre Ausgangsstoffe. Beim Übergang von Stoffen mit einer höheren Energie auf Stoffe mit einer niedrigeren Energie wird die Energiedifferenz freigesetzt, zum Beispiel in Form von Wärme. Da bei exothermen Reaktionen das System an Energie verliert, erhält diese Reaktionswärme ein negatives Vorzeichen. Die Umgebung erfährt dabei stets eine Temperaturerhöhung.
Eine exotherme Reaktion die einmal in Gang gesetzt wurde ist schwer aufzuhalten. Sie reagieren immer spontan zum Endprodukt.
Endotherme Reaktionen
(endo… griech. = hinein; therme… griech. =Wärme)
Bilden sich allerdings Produkte mit einem höheren Energiegehalt, so muss das System ständig Energie aufnehmen. Diese Reaktionen nennt man endotherme Reaktionen. Da das System an Energie gewinnt, erhält diese Reaktionswärme ein positives Vorzeichen.
Endotherme Reaktionen laufen selten spontan ab. Doch wenn eine endotherme Reaktion freiwillig abläuft führt dies immer zu einer Abkühlung der Umgebung. Endotherme Reaktionen laufen freiwillig ab, obwohl sie eben nicht nach einem Energieminimum sterben. Dies liegt daran, dass zu diesem Streben nach einem Energieminimum noch ein weiterer wesentlicher Faktor hinzukommt: Das Streben nach Unordnung. Als Maß für diese Unordnung dient die Entropie.
Entropie (Symbol S)
(entropia griech.= Umkehren/Wendung)
Entropie kann stark vereinfacht mit Unordnung gleichgesetzt werden. Streng genommen ist die Entropie kein Maß für die Symmetrie des Systems, sondern für die Anzahl der erreichbaren Zustände. Je mehr Wahrscheinlichkeiten es in einem System für Zustände gibt, umso höher ist seine Entropie. Wenn die Zahl der möglichen Anordnungen zunimmt wächst auch die Entropie.
Jedes System ist bestrebt, einen Zustand maximaler Unordnung zu erreichen. Zusammenfassend kann man also sagen, dass eine spontane Reaktion von zwei Faktoren begünstigt wird:
1. Abnahme der Enthalpie
2. Zunahme der Entropie
Die Gibbs-Helmholtz-Gleichung verknüpft die Enthalpie und die Entropie zu einer Gleichung und liefert eine Aussage darüber, ob eine Reaktion freiwillig ablaufen kann oder nicht.
Die Gibbs-Helmholtz-Gleichung: ΔG= ΔH –T·ΔS
ΔG = Gibbs Energie [kJ]
ΔH = Änderung der Enthalpie [kJ]
ΔS = Änderung der Entropie [kJ · K-1]
T = Temperatur [K] [=Kelvin]
Das Δ steht für die Differenz zwischen den Werten der Produkte.
Über ΔG lassen sich nun konkrete Aussageb treffen:
1. ΔG < 0 => exergoner Prozess:
=> Eine Reaktion läuft dann freiwillig ab, wenn der Wert für ΔG kleiner als null wird, also einen negativen Wert aufweist. Man spricht von einem exergonen, also freiwillig ablaufenden Reaktion.
2. ΔG > 0 => endergoner Prozess
=> Errechnet sich eine Änderung der Gibbs-Energie, die größer als null ist, also einen positiven Wert einnimmt, dann kann diese Reaktion nicht spontan ablaufen und benötigt eine ständige Energiezufuhr. Solche erzwungenen Reaktionen nennt man endergone Prozesse.
3. ΔG = 0 => System ist im Gleichgewicht - es findet keine Reaktion statt!
Entspricht die Änderung der Gibbs-Energie der Zahl Null, findet keine Reaktion statt und das System ist im Gleichgewicht.
- Anorganische Chemie: Entropie
- Anorganische Chemie: Erdalkalimetalle - Barium
- Anorganische Chemie: Erdalkalimetalle - Beryllium
- Anorganische Chemie: Erdalkalimetalle - Calcium
- Anorganische Chemie: Erdalkalimetalle - Magnesium
- Anorganische Chemie: Erdalkalimetalle - Strontium
- Anorganische Chemie: Erstellen von Valenzstrichformeln / Lewis-Formeln
- Anorganische Chemie: Freie Enthalpie, Gibbs-Helmholtz und Reaktions- und Bildungsenthalpie
- Anorganische Chemie: Galvanisches Element & Daniell-Element
- Anorganische Chemie: Gasgleichgewichte, Kp und das MWG
- Anorganische Chemie: Halogene - Astat
- Anorganische Chemie: Halogene - Brom
- Anorganische Chemie: Halogene - Chlor
- Anorganische Chemie: Halogene - Iod
- Anorganische Chemie: Heterogene Katalyse
- Anorganische Chemie: Historische Entwicklung des Säure-Base-Begriffs (Arrhenius & Brönstedt)
- Anorganische Chemie: Innere Energie, Enthalpie und Verbrenungsenthalpien
- Anorganische Chemie: Ionen und Ionenbildung
- Anorganische Chemie: Ionisierungsenergie, Elektroaffinität und Elektronegativität
- Anorganische Chemie: Ist Natronlauge eine Base? (Protolyse)
- Anorganische Chemie: Katalysator und Katalyse
- Anorganische Chemie: Kollisionsmodell & Stoßtheorie
- Anorganische Chemie: Konzentrationselemente und die Nernstgleichung (noch frei)
- Anorganische Chemie: Krypton
- Anorganische Chemie: Kupfer und Kupfergewinnung
- Anorganische Chemie: Legierungen
- Anorganische Chemie: Löslichkeit und Löslichkeitsgleichgewichte
- Anorganische Chemie: Metalle - Alkalimetalle
- Anorganische Chemie: Metalle - Allgemeine Übersicht, Eigenschaften, Verwendung
- Anorganische Chemie: Metalle - Aluminium und Aluminiumverbindungen
- Anorganische Chemie: Metalle - Eisen und Eisenverbindungen
- Anorganische Chemie: Metalle - Erdalkalimetalle
- Anorganische Chemie: Metalle - Gold
- Anorganische Chemie: Metalle - Korrosion und Korrosionsschutz
- Anorganische Chemie: Metalle - Kupfer und Kupferverbindungen
- Anorganische Chemie: Metalle - Uran
- Anorganische Chemie: Metalle und die Metallbindung
- Anorganische Chemie: Oxidationsstufen des Mangans
- Anorganische Chemie: Periodensystem (!)
- Anorganische Chemie: pH-Abhängigkeit von Redoxpotentialen (über die Nernst-Gleichung)
- Anorganische Chemie: pH-Elektrode & elektrochemische pH-Wert-Bestimmung
- Anorganische Chemie: pH-Wert (und pOH-Wert)
- Anorganische Chemie: Phosphor
- Anorganische Chemie: Photovoltaik und Brennstoffzelle
- Anorganische Chemie: Protolyse von Phosphorsäure
- Anorganische Chemie: Protolysereaktionen bei Salzen (Säure-Base Reaktionen)
- Anorganische Chemie: Reaktion von Säuren und Basen mit Wasser
- Anorganische Chemie: Reaktionsgeschwindigkeit und Messung der Reaktionsgeschwindigkeit
- Anorganische Chemie: Reaktionsgeschwindigkeit, Momentangeschwindigkeit und Messung (sowie HWZ)
- Anorganische Chemie: Reaktionsgeschwindigkeitsmessung von Thiosulfationen mit Säure
- Anorganische Chemie: Redoxreaktionen aufstellen
- Anorganische Chemie: Redoxreaktionen im Alltag
- Anorganische Chemie: Salpetersäure HNO₃ - Herstellung, Verwendung, Eigenschaften
- Anorganische Chemie: Salpetrige Säure
- Anorganische Chemie: Salze
- Anorganische Chemie: Salzherstellung durch Neutralisation
- Anorganische Chemie: Sauerstoff
- Anorganische Chemie: Sauerstoffsäuren des Chlors
- Anorganische Chemie: Sauerstoffsäuren des Phosphors
- Anorganische Chemie: Säure-Base Chemie (Brönsted-Definitionen)
- Anorganische Chemie: Säure-Base-Puffer und Puffersysteme
- Anorganische Chemie: Säurestärke (pKs) und Basenstärke (pKb)
- Anorganische Chemie: Schwefel
- Anorganische Chemie: Schwefelsäure
- Anorganische Chemie: Stickstoff
- Anorganische Chemie: Struktur von Salzen, Ionengitter und Ionenbildung
- Anorganische Chemie: Übungsaugaben zum Massenwirkungsgesetz (MWG)
- Anorganische Chemie: Vergleich von Ionenbindung und Atombindung
- Anorganische Chemie: Wasserstoff
- Anorganische Chemie: Wie berechnet man Neutralistionsaufgaben (Beispielaufgaben)
- Anorganische Chemie: Wie funktioniert der Lithium-Ionen-Akku?
- Anorganische Chemie: Zink
- Anorgansiche Chemie: Redoxreaktion - Beispielaufgaben
- Biochemie: Biokatalysatoren (Enzyme)
- Chemie: Oxidationszahlen und deren Bestimmung (!)
- Farbigkeit und Molekülstruktur
- Glossar: Fachbegriffe der anorganischen und organischen Chemie mit Erklärungen
- Komplexchemie: Anwendungen der Komplexchemie
- Komplexchemie: Aquakomplexe
- Komplexchemie: Aufbau von Komplexen
- Komplexchemie: Chelatkomplexe
- Komplexchemie: Historischer Abriss der Entdeckung der Komplexchemie
- Komplexchemie: In der Natur vorkommende (biologische) Komplexverbindungen
- Komplexchemie: Komplexe Gleichgewichtsreaktionen und die Stabilitätskonstanten
- Komplexchemie: Komplexstabilitätskonstante und Komplexzerfallskonstante
- Komplexchemie: Ligandenaustauschreaktionen
- Komplexchemie: Nomenklatur (Benennung) von Komplexen
- Komplexchemie: Wasserenthärtung
- Ökologische, ökonomische und soziale Nachhaltigkeit in Chemie
- Organische Chemie: Gelatine
- Selektivität und Spezifität von Katalysatoren
- Herstellung von Maßlösungen
- I-Effekte beeinflussen die Säurestarke von Carbonsäuren
- Organische Chemie: Oxidative Fettumwandlung (Ranzigwerden von Fetten)
- Organische Chemie: Alkane - feste Alkane // Wachse und Paraffine
- Organische Chemie: Alkane - flüssige Alkane
- Organische Chemie: Alkane - gasförmige Alkane
- Organische Chemie: Alkanole (Alkohole)
- Organische Chemie: Alkene und Alkine
- Organische Chemie: Alkohol und seine Wirkung auf Menschen
- Organische Chemie: Alkoholate
- Organische Chemie: Alkohole: Ethanolherstellung durch alkoholische Gärung und großtechnische Produktion
- Organische Chemie: Aminosäuren - Peptidbindung, Typen, Aufbau, Reaktionen
- Organische Chemie: Anorganische Ester
- Organische Chemie: Aufgaben und Übungen zur Nomenklatur bei organischen Verbindungen
- Organische Chemie: Benzin und Diesel
- Organische Chemie: Bestimmung von Schmelz- und Siedepunkten
- Organische Chemie: Biogasanlagen
- Organische Chemie: Brennbarkeit von Kohlenwasserstoffen
- Organische Chemie: Carbonsäuren: homologe Reihe, Verwendung
- Organische Chemie: Carbonylverbindungen - Aldehyde
- Organische Chemie: Carbonylverbindungen - Ketone
- Organische Chemie: chemische Nachweise bei organischen Verbindungen
- Organische Chemie: Cis-/ trans-Isomerie und E/Z-Isomerie
- Organische Chemie: Cycloalkane und Cykloalkene
- Organische Chemie: Darstellungsweisen organischer Verbindungen
- Organische Chemie: Der Einfluss der I-Effekte auf die Säurestärke
- Organische Chemie: Die Aminosäure Glycin
- Organische Chemie: Die Chemie der "Shisha"
- Organische Chemie: Die Harnstoffsynthese von Friedrich Wöhler
- Organische Chemie: Eigenschaften von Aminosäuren
- Organische Chemie: Einfluss von Molekülmasse und Van der Waals-Kräften auf die Schmelz- und Siedepunkte
- Organische Chemie: Elektrophile und nukleophile Addition
- Organische Chemie: Eliminierung
- Organische Chemie: Energetische Betrachtung organischer Reaktionen
- Organische Chemie: Erdöl und Erdgas
- Organische Chemie: Erdöldestillation zur Gewinnung von Kohlenwasserstoffen
- Organische Chemie: Ester und die Veresterung
- Organische Chemie: Esterspaltung durch Hydrolyse
- Organische Chemie: Ethan
- Organische Chemie: Ethanol
- Organische Chemie: Ethen, Propen und Buten
- Organische Chemie: Ethin
- Organische Chemie: Ethin, Propin, Butin
- Organische Chemie: Färbeverfahren
- Organische Chemie: Fehlingprobe & Tollens-Probe
- Organische Chemie: Fehlingprobe und reduzierende Eigenschaften bei Kohlenhydraten
- Organische Chemie: Fette
- Organische Chemie: Fetthärtung und Margarineherstellung
- Organische Chemie: Fettsäuren
- Organische Chemie: Fischer-Projektion und die Umwandlung in die Haworth-Projektion
- Organische Chemie: Fluor-Chlor-Kohlenwasserstoffe (FCKW)
- Organische Chemie: Fruchtsäuren
- Organische Chemie: Fructose
- Organische Chemie: Galactose (!)
- Organische Chemie: Glucose (Traubenzucker)
- Organische Chemie: Glycogen (tierische Stärke)
- Organische Chemie: Glycosidische Bindung
- Organische Chemie: Gummi und Kautschuk
- Organische Chemie: Halogenalkane (!)
- Organische Chemie: Homologe Reihe der Alkane (!)
- Organische Chemie: I-Effekte
- Organische Chemie: Insulin
- Organische Chemie: Isobuten
- Organische Chemie: Isomaltose & Maltose als typische Disaccharide
- Organische Chemie: Isomerieformen
- Organische Chemie: Kerosin und Schweröl als Erdölbestandteile
- Organische Chemie: Keto-En(di)ol-Tautomerie bei Monosacchariden
- Organische Chemie: Kohle und Graphit
- Organische Chemie: Kohlenhydrate - Disaccharide
- Organische Chemie: Kunststoffe I - Allgemeines und radikalische Polymerisation
- Organische Chemie: Kunststoffe im Vergleich: Thermoplaste
- Organische Chemie: Lactose
- organische Chemie: Löslichkeit von organischen Verbindungen (polare und apolare Lösungsmittel)
- Organische Chemie: Mechanismus Veresterung
- Organische Chemie: mehrwertige Alkohole (Alkanole)
- Organische Chemie: Methan
- Organische Chemie: Nachweis von Proteinen (Ninhydrin-Reaktion)
- Organische Chemie: Nachweise für ungesättige Fettsäuren
- Organische Chemie: Nitril als wichtiger Kunststoff
- Organische Chemie: Nomenklatur und Benennung von organischen Kohlenwasserstoffen
- Organische Chemie: Nukleophile Addition
- Organische Chemie: Nukleophile Substitution
- Organische Chemie: Optische Aktivität
- Organische Chemie: Oxidation und Reduktion von Aldehyden
- Organische Chemie: Oxidation von Alkoholen
- Organische Chemie: Oxidation von Glucose mit Methylenblau (blaues Wunder)
- Organische Chemie: Pektine
- Organische Chemie: Petrochemie
- Organische Chemie: Plexiglas als Kunststoff
- Organische Chemie: Polare und apolare Lösungsmittel und Lösungmitteleigenschaften (!)
- Organische Chemie: Polykondensation von Nylon
- Organische Chemie: Polysaccharide
- Organische Chemie: Propan
- Organische Chemie: Radikalische Substitution
- Organische Chemie: Reaktionsmechanismen der organischen Chemie (Übersicht)
- Organische Chemie: Redoxreaktionen und Oxidationszahlen bei organischen Verbindungen
- Organische Chemie: Saccharose
- Organische Chemie: Schmelz- und Siedebereiche von Fetten und Ölen
- Organische Chemie: Schmelz- und Siedepunkte von Alkanen und Alkenen
- Organische Chemie: Schmerzmittel
- Organische Chemie: Spiegelbildisomerie (Stereoisomerie)
- Organische Chemie: Stärke (Amylose und Amylopektin)
- Organische Chemie: Struktur- und Eigenschaftsbeziehungen bei organischen Kohlenwasserstoffen
- Organische Chemie: Tenside
- Organische Chemie: Titration von Glycin
- Organische Chemie: Typen von Carbonsäuren
- Organische Chemie: Verbrennung von Alkanen und CO2-Emission
- Organische Chemie: Vergleich von Siedepunkten bei Alkanen, Alkanolen, Aldehyden und Carbonsäuren
- Organische Chemie: Verseifung